Publications

For latest publications see: Google scholar and ORCID . Lab members in bold.


Pre-prints

Evans C, Mogg SL, Soraru C, Wallington E, Coates JC, Borrill P. 2024. Wheat NAC transcription factor NAC5-1 is a positive regulator of senescence. BioRxiv. https://doi.org/10.1101/2024.02.02.578592

White B, Lux T, Rusholme-Pilcher RL, JuhászA, Kaithakottil G, Duncan S, Simmonds J, Rees H, Wright J, Colmer J, Ward S, Joynson R, Coombes B, Irish N, Henderson S, Barker T, Chapman H, Catchpole L, Gharbi K, Okada M, Handa H, Nasuda S, Shimizu KK, Gundlach H, Lang D, Naamati G, Legg EJ, Bharti AK, Colgrave ML, Haerty W, Uauy C, Swarbreck D, Borrill P, Poland JA, Krattinger S, Stein N, Mayer KFX, Pozniak C, 10+ Wheat Genome Project, Manuel Spannagl, Hall A. 2024. De novo annotation of the wheat pan-genome reveals complexity and diversity within the hexaploid wheat pan-transcriptome. BioRxiv https://doi.org/10.1101/2024.01.09.574802

Peer reviewed publications

2023

Andleeb T, Knight E, Borrill P. 2023. Wheat NAM genes regulate the majority of early monocarpic senescence transcriptional changes including nitrogen remobilisation genes. G3: Genes, Genomes, Genetics, jkac275. https://doi.org/10.1093/g3journal/jkac275

2022

Borrill P, Mago R, Xu T, Ford B, Williams SJ, Derkx A, Bovill WD, Hyles J, Bhatt D, Xia X, MacMillan C, White R, Buss W, Molnár I, Walkowiak S, Olsen OA, Doležel J, Pozniak CJ, Spielmeyer W. 2022. An autoactive NB-LRR gene causes Rht13 dwarfism in wheat. Proceedings of the National Academy of Sciences of the United States of America 119: e2209875119. https://doi.org/10.1073/pnas.2209875119

Evans CEB, Arunkumar R, Borrill P. 2022. Transcription factor retention through multiple polyploidisation steps in wheat. G3: Genes, Genomes, Genetics, 12: jkac147. https://doi.org/10.1093/g3journal/jkac147

Polturak G, Dippe M, Stephenson MJ, Misra RC, Owen C, Ramirez-Gonzalez R, Haidioulis J, Schoonbeek H-J, Chartrain L, Borrill P, Nelson DR, Brown J, Nicholson P, Uauy C, Osbourn A. 2022. Genome Mining Uncovers Clustered Biosynthetic Pathways for Defense-Related Molecules in Bread Wheat. Proceedings of the National Academy of Sciences of the United States of America, 119: e2123299119. https://doi.org/10.1073/pnas.2123299119

2020

Harrington SA, Backhaus AE, Fox S, Rogers C, Borrill P, Uauy C, Richardson A. 2020. A heat-shock inducible system for flexible gene expression in cereals. Plant Methods, 16: 137. https://doi.org/10.1186/s13007-020-00677-3

Buss W, Ford BA, Foo E, Schnippenkoetter W, Borrill P, Brooks B, Ashton AR, Chandler PM, Spielmeyer W. 2020. Overgrowth mutants determine the causal role of GA2oxidaseA13 in Rht12 dwarfism of wheat, Journal of Experimental Botany, 71: 7171–7178. https://doi.org/10.1093/jxb/eraa443

Ali MW and Borrill P. 2020. Novel genomic resources to accelerate wheat biofortification. Heredity, 125: 386. https://doi.org/10.1038/s41437-020-0326-8 Open access version

Borrill P. 2020. Blurring the boundaries between cereal crops and model plants. New Phytologist, 228: 1721. https://doi.org/10.1111/nph.16229. Winner of the 2019 New Phytologist Tansley Medal

Orman-Ligeza B, Borrill P, Chia T, Chirico M, Doležel J, Drea S, Karafiátová M, Schatlowski N, Solomon CU, Steuernagel B, Wulff BBH, Uauy C, Trafford K. 2020. LYS3  encodes a prolamin-box-binding transcription factor that controls embryo growth in barley and wheat. Journal of Cereal Science 93: 102965. https://doi.org/10.1016/j.jcs.2020.102965

Adamski NM*, Borrill P*, Brinton J*, Harrington S*, Marchal C*, Bentley AR, Bovill WD, Cattivelli L, Cockram J, Contreras-Moreira B, Ford B, Ghosh S, Harwood W, Hassani-Pak K, Hayta S, Hickey LT, Kanyuka K, King J, Maccaferrri M, Naamati G, Pozniak CJ, Ramirez-Gonzalez RH, Sansaloni C, Trevaskis B, Wingen LU, Wulff BBH, Uauy C. 2020. A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. eLIFE 9: e55646. https://doi.org/10.7554/eLife.55646 *Co-first author.

2019

Harrington SA, Overend LE, Cobo N, Borrill P, Uauy C. 2019. Conserved residues in the wheat (Triticum aestivum) NAM-A1 NAC domain are required for protein binding and when mutated lead to delayed peduncle and flag leaf senescence. BMC Plant Biology 19: 407. https://doi.org/10.1186/s12870-019-2022-5

Alabdullah AK, Borrill P, Martin AC, Ramirez-Gonzalez RH, Hassani-Pak K, Uauy C, Shaw PJ, Moore G. 2019. A co-expression network in hexaploid wheat reveals mostly balanced expression and lack of significant gene loss of homeologous meiotic genes upon polyploidization. Frontiers in Plant Science 10: 1325. https://doi.org/10.3389/fpls.2019.01325

Harrington SA, Cobo N, Karafiátová M, Doležel J, Borrill P, Uauy C. 2019 . Identification of a dominant chlorosis phenotype through a forward screen of the Triticum turgidum cv. Kronos TILLING population. Frontiers in Plant Science 10: 963. https://doi.org/10.3389/fpls.2019.00963

Borrill P†, Harrington SA, Simmonds J, Uauy C†. 2019. Identification of transcription factors regulating senescence in wheat through gene regulatory network modelling. Plant Physiology 180: 1740-1755. https://doi.org/10.1104/pp.19.00380 †Co-corresponding author.

Borrill P, Harrington SA, Uauy C. 2019. Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. Plant Journal 97: 56-72. https://doi.org/10.1111/tpj.14150

Gálvez S, Mérida-García R, Camino C, Borrill P, Abrouk M, Ramirez-Gonzalez RH, Biyiklioglu S, Amil-Ruiz F, The IWGSC, Dorado G, Budak H, Gonzalez-Dugo V, Zarco-Tejada P, Appels R, Uauy C, Hernandez P.  2019. Hotspots in the genomic architecture of field drought responses in wheat as breeding targets. Functional & Integrative Genomics.10: 295. https://doi.org/10.1007/s10142-018-0639-3

2018

Martin AC, Borrill P, Higgins J, Alabdullah AK, Ramirez-Gonzalez R, Swarbreck D,  Uauy C, Shaw P, Moore G. 2018. Genome-wide transcription during early wheat meiosis is independent of synapsis, ploidy level and the Ph1 locus. Frontiers in Plant Science 9: 1791. https://doi.org/10.3389/fpls.2018.01791

Fahy B, Siddiqui H, David L, Powers S, Borrill P, Uauy C, Smith AM. 2018. Final grain weight is not limited by the activity of key starch-synthesising enzymes during grain filling in wheat. Journal of Experimental Botany: 69: 5461-5475. https://doi.org/10.1093/jxb/ery314

Ramírez-González RH*, Borrill P.*†, Lang D, Harrington SA, Brinton J,  Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson S, Cory A, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A, International Wheat Genome Sequencing Consortium, Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak C, Provart NJ, Sharpe AG, Paux E, Spannagl M, Bräutigam A, Uauy C†. 2018. The transcriptional landscape of polyploid wheat. Science 361: eaar6089. https://doi.org/10.1126/science.aar6089. *Co-first author and †co-corresponding author.

International Wheat Genome Sequencing Consortium. 2018. Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence. Science 361: eaar7191. https://doi.org/10.1126/science.aar7191

Wicker T., Gundlach H., Spannagl M, Uauy C, Borrill P, Ramírez-González RH, De Oliveira R, International Wheat Genome Sequencing Consortium, Mayer KFX, Paux E, Choulet F. 2018. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biology 19: 103. https://doi.org/10.1186/s13059-018-1479-0

2017

Borrill P, Harrington SA, Uauy C. Genome-wide sequence and expression analysis of the NAC transcription factor family in polyploid wheat. 2017. G3: Genes, Genomes, Genetics 7: 3019-3029. https://doi.org/10.1534/g3.117.043679

Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, Lipscombe J, Barker T, Lu FH, McKenzie N, Raats D, Ramirez-Gonzalez R, Coince A, Peel N, Percival-Alwyn L, Duncan O, Trösch J, Yu G, Bolser D, Namaati G, Kerhornou A, Spannagl M, Gundlach H, Harberer G, Davey R, Fosker C, di Palma F, Phillips A, Millar AH, Kersey P, Uauy C, Krasileva KV, Swarbreck D, Bevan MW, Clark MD. 2017. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research 27: 885-896. https://doi.org/10.1101/gr.217117.116

Krasileva KV, Vasquez-Gross H, Howell T, Bailey P, Paraiso F, Clissold L, Simmonds J, Ramirez-Gonzalez R, Wang X, Borrill P, Fosker C, Ayling S, Phillips A, Uauy C, Dubcovsky J. 2017. Uncovering hidden variation in polyploid wheat.  Proceedings of the National Academy of Sciences of the United States of America 114: E913-E921. https://doi.org/10.1073/pnas.1619268114

2016

Halliwell J, Borrill P, Gordon A, Kowalczyk R, Pagano ML, Saccomanno B,. Bentley AR, Uauy C, Cockram J. Systematic investigation of FLOWERING LOCUS T-like Poaceae gene families identifies the short-day expressed flowering pathway gene, TaFT3 in wheat (Triticum aestivum L.). 2016. Frontiers in Plant Science 7: 857. https://doi.org/10.3389/fpls.2016.00857

Borrill P, Ramirez-Gonzalez R, Uauy C. expVIP: a customisable RNA-seq data analysis and visualisation platform. 2016. Plant Physiology 170:2172-2186. https://doi.org/10.​1104/​pp.​15.​01667

2015

Borrill P, Fahy B, Smith AM, Uauy C. Wheat grain filling is limited by grain filling capacity rather than the duration of flag leaf photosynthesis: a case study using NAM RNAi plants. 2015. PLOS ONE 10: e0134947. https://doi.org/10.1371/journal.pone.0134947

Borrill P, Adamski N, Uauy C. Genomics as the key to unlocking the polyploid potential of wheat. 2015. New Phytologist 208: 1008-1022. Invited Tansley review. https://doi.org/10.1111/nph.13533

2014 and earlier

Borrill P, Connorton J, Balk J, Miller T, Sanders D, Uauy C. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. 2014. Frontiers in Plant Science 5: 53. https://doi.org/10.3389/fpls.2014.00053

Scialdone A, Mugford ST, Feike D, Skeffington A, Borrill P, Graf A, Smith AM, Howard M. Arabidopsis plants perform arithmetic division to prevent starvation at night. 2013. eLife 2: e00669. https://doi.org/10.7554/eLife.00669

Kajala K, Brown NJ, Williams BP, Borrill P, Taylor LE, Hibberd JM. Multiple Arabidopsis genes primed for recruitment into C4 photosynthesis. 2012. Plant Journal 69: 47-56. https://doi.org/10.1111/j.1365-313X.2011.04769.x

Xu XM, Wang J, Xuan ZY, Goldshmidt A, Borrill PGM, Hariharan N, Kim JY, Jackson D. 2011. Chaperonins Facilitate KNOTTED1 Cell-to-Cell Trafficking and Stem Cell Function. Science 333: 1141-1144. https://doi.org/10.1126/science.1205727